The use of linkage disequilibrium to localize the genes underlying quantitative traits has received considerable attention in the livestock genetics community over the past few years. This has resulted in the investigation of linkage disequilibrium structures of several domestic livestock populations to assess their potential use in fine-mapping efforts. However, the linkage disequilibrium structure of free-living populations has been less well investigated. As the direct evaluation of linkage disequilibrium can be both time consuming and expensive the use of simulations that include as many aspects of population history as possible is advocated as an alternative. A simulation of the linkage disequilibrium structure of the Soay sheep population of St. Kilda, Scotland, is provided as an example. The simulated population showed significant decline of linkage disequilibrium with genetic distance and low levels of background linkage disequilibrium, indicating that the Soay sheep population is a viable resource for linkage disequilibrium fine mapping of quantitative trait loci.