A major objective of breeders using the Ogu-INRA cytoplasmic male sterility (cms) system in rapeseed (Brassica napus L.) is to obtain double low restorer lines with a shorter introgression and a good agronomic value. The development of low glucosinolate content (low GC) restorer lines often occurs through the deletion of a part of the introgression. One of these lines has lost the radish Pgi-2 allele expression, without recovering that of the rapeseed Pgi-2 allele. This line shows a defect in the meiotic transmission of the restorer gene Rfo and a very poor agronomic value. We initiated a programme to force non-spontaneous recombination between this Rfo-carrying introgression and the rapeseed homologous chromosome from a low GC B. napus line. Gamma ray irradiation was used to induce chromosome breakage just prior meiosis aiming at just such a recombination. Low GC cms plants were crossed with the pollen of irradiated plants that were heterozygous for this introgression. The F(2) families were scored for their vigour, transmission rate of Rfo and female fertility. One family of plants, R2000, showed an improved behaviour for these three traits. This family presented a unique combination of molecular markers when compared to other rapeseed restorers analysed, which suggests that the recombination event allowed the recovery of B. oleracea genetic information that was originally replaced by the radish introgression in the original restorers. This resulted in a duplicated region (originating from radish and B. oleracea) on the chromosome carrying the introgression in the R2000 family.