DNA vaccines are a promising technology for the induction of Ag-specific immune responses, and much recent attention has gone into improving their immune potency. In this study we test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for the induction of improved Ag-specific CD8(+) T cellular immune responses. Because native IL-15 is poorly expressed, we used PCR-based strategies to develop an optimized construct that expresses 80-fold higher than the native IL-15 construct. Using a DNA vaccination model, we determined that immunization with optimized IL-15 in combination with HIV-1gag DNA constructs resulted in a significant enhancement of Ag-specific CD8(+) T cell proliferation and IFN-gamma secretion, and strong induction of long-lived CD8(+) T cell responses. In an influenza DNA vaccine model, coimmunization with plasmid expressing influenza A PR8/34 hemagglutinin with the optimized IL-15 plasmid generated improved long term CD8(+) T cellular immunity and protected the mice against a lethal mucosal challenge with influenza virus. Because we observed that IL-15 appeared to mostly adjuvant CD8(+) T cell function, we show that in the partial, but not total, absence of CD4(+) T cell help, plasmid-delivered IL-15 could restore CD8 secondary immune responses to an antigenic DNA plasmid, supporting the idea that the effects of IL-15 on CD8(+) T cell expansion require the presence of low levels of CD4 T cells. These data suggest a role for enhanced plasmid IL-15 as a candidate adjuvant for vaccine or immunotherapeutic studies.