Tumor suppressor p53 and inhibitor of DNA-binding/differentiation Id2 were examined after 7 or 21 days of wing weighting in fast patagialis (PAT) and slow anterior latissimus dorsi (ALD) wing muscles of young adult and old Japanese quails. The contralateral wing served as the intra-animal control. Seven days of loading increased PAT and ALD muscle weight by 28 and 96%, respectively, in young birds. PAT and ALD muscle weight was 49 and 179% greater, respectively, than control muscles after 21 days of loading in young birds. In aged birds, no PAT or ALD hypertrophy was found after 7 days of loading; however, PAT and ALD muscle weight increased by 29 and 102%, respectively, after 21 days of loading. Id2 protein in the nuclear muscle fraction increased in both PAT and ALD muscles from young adult and old birds that were loaded for 7 days and in ALD muscles after 21 days of loading relative to contralateral control muscles. Nuclear p53 protein was greater in 7- or 21-day loaded PAT and ALD muscles relative to control muscles in both age groups. Cytosolic Id2 and p53 protein contents were not changed in loaded PAT or ALD muscles relative to control muscles at any time point. These data suggest that nuclear, but not cytosolic, Id2 and p53 are responsive to stretch-induced muscle overload. Moreover, the attenuated ability of the aged skeletal muscle to achieve hypertrophy does not appear to be explained by the subcellular changes in Id2 and p53 content with overload.