1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport

Am J Physiol Gastrointest Liver Physiol. 2005 Dec;289(6):G1036-42. doi: 10.1152/ajpgi.00243.2005. Epub 2005 Jul 14.

Abstract

Fibroblast growth factor (FGF)23 is a phosphaturic hormone that decreases circulating 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and elicits hypophosphatemia, both of which contribute to rickets/osteomalacia. It has been shown recently that serum FGF23 increases after treatment with renal 1,25(OH)(2)D(3) hormone, suggesting that 1,25(OH)(2)D(3) negatively feedback controls its levels by inducing FGF23. To establish the tissue of origin and the molecular mechanism by which 1,25(OH)(2)D(3) increases circulating FGF23, we administered 1,25(OH)(2)D(3) to C57BL/6 mice. Within 24 h, these mice displayed a dramatic elevation in serum immunoreactive FGF23, and the expression of FGF23 mRNA in bone was significantly upregulated by 1,25(OH)(2)D(3), but there was no effect in several other tissues. Furthermore, we treated rat UMR-106 osteoblast-like cells with 1,25(OH)(2)D(3), and real-time PCR analysis revealed a dose- and time-dependent stimulation of FGF23 mRNA concentrations. The maximum increase in FGF23 mRNA was 1,024-fold at 10(-7) M 1,25(OH)(2)D(3) after 24-h treatment, but statistically significant differences were observed as early as 4 h after 1,25(OH)(2)D(3) treatment. In addition, using cotreatment with actinomycin D or cycloheximide, we observed that 1,25(OH)(2)D(3) regulation of FGF23 gene expression occurs at the transcriptional level, likely via the nuclear vitamin D receptor, and is dependent on synthesis of an intermediary transfactor. These results indicate that bone is a major site of FGF23 expression and source of circulating FGF23 after 1,25(OH)(2)D(3) administration or physiological upregulation. Our data also establish FGF23 induction by 1,25(OH)(2)D(3) in osteoblasts as a feedback loop between these two hormones that completes a kidney-intestine-bone axis that mediates phosphate homeostasis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone and Bones / drug effects
  • Bone and Bones / metabolism*
  • Calcitriol / pharmacology*
  • Cell Line
  • Cycloheximide / pharmacology
  • Dactinomycin / pharmacology
  • Fibroblast Growth Factor-23
  • Fibroblast Growth Factors / biosynthesis*
  • Gene Expression Regulation*
  • Intestine, Small / physiology
  • Kidney / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Osteoblasts
  • Phosphates / metabolism*
  • Rats
  • Up-Regulation

Substances

  • Fgf23 protein, mouse
  • Phosphates
  • Dactinomycin
  • Fibroblast Growth Factors
  • Fibroblast Growth Factor-23
  • Cycloheximide
  • Calcitriol