Purpose: The aim of the study is to evaluate the effects of targeting the antivascular drug combretastatin to irradiated mouse melanomas.
Methods: Combretastatin was incorporated into liposomes with surfaces modified by the addition of cyclo(Arg-Gly-Asp-D-Phe-Cys) (RGD) to create an immunoliposome (IL). This addition of RGD allows the liposome to be preferentially targeted to alphavbeta3, an integrin up-regulated in the vasculature of irradiated tumors. C57BL mice bearing a transplanted B16-F10 melanoma were randomly assigned to one of the following treatment groups: untreated, a single dose of 5-Gy radiation (IR), IL (14.5 mg/kg of combretastatin), 5-Gy radiation plus IL, and a systemic administration of free drug (81.0 mg/kg of combretastatin).
Results: In this transplanted tumor model, there was no significant increase in the volume of the IL + IR (5 Gy) treated tumors during the initial 6 days posttreatment; all other treatment groups exhibited exponential growth curves after day 3. The IL + IR (5 Gy) treatment resulted in a 5.1-day tumor growth delay compared to untreated controls.
Conclusions: These findings indicate that preferential targeting of antivascular drugs to irradiated tumors results in significant tumor growth delay.