The neurological causes of vocal fold paralyses have been well documented. However, the effect of these disorders on laryngeal vibration is not well understood. A theoretical four-mass model of the larynx, based on the work of Ishizaka and Isshiki (1976) and Koizumi, Taniguchi, and Hiromitsu (1987), was developed and adapted to simulate laryngeal biomechanical behavior. The model was used to evaluate various states of asymmetric laryngeal vibration. Input parameters that relate observed laryngeal function and model simulation were developed. Laryngeal paralyses were simulated by their predicted effect on these parameters. Simulations were compared with available data on glottal vibration in laryngeal paralyses. Complex modes of vibration were seen with certain combinations of asymmetrical lower mass stiffness and initial glottal gap.