The relationship between energy status and hypoxia was examined in two murine tumors with substantially different hypoxic cell fractions in situ and in cells derived from these tumors in vitro. Parameters of tumor energy status were NTP/Pi and PCr/Pi obtained by 31P-NMR spectroscopy and adenylate energy charge and energy status obtained by high-pressure liquid chromatographic analysis of tumor extracts. Adenylate energy charge and rates of high-energy phosphate degradation were determined on cells obtained from both tumor types (MCaIV and FSaII) under identical nutrient and oxygen conditions, that is, air and nitrogen for various durations (0-6 hr). No consistent or substantial differences were noted in the various parameters of tumor energy status obtained by nuclear magnetic resonance analysis or analysis of tumor extracts, even though the MCaIV contains a substantially larger hypoxic fraction (49% vs 12%). Under in vitro conditions, the two cell lines exhibited different responses to oxygen deprivation, the MCaIV being substantially more refractory to energy changes secondary to hypoxia. Noting with caution that this study is based on only two tumor types, our results suggest that differences in cellular capacity for energy maintenance preclude quantitative inferences regarding tumor oxygen status from energy status between tumor types.