The myofibrillar changes of rat denervated soleus muscle were studied in the presence and in the absence of an antifibrillatory drug. After bilateral sciaticotomy, a concentrated solution of procainamide hydrochloride was steadily released, by way of a miniosmotic pump, in the space between the soleus and the gastrocnemius muscles of one leg. Fibrillation activity of soleus muscles was checked electromyografically at 3- to 5-day intervals. On the 21st day following denervation the muscles were excised, stained for adenosine triphosphatase activity and analysed for myosin heavy chain (MHC) isoforms. In the denervated-procainamide-treated muscles fibrillation was consistently (-75% on average) depressed in comparison to the contralateral denervated muscles. Type 1 (slow) fibres and MHC isoform were also significantly reduced, to the advantage of type 2A (fast) fibres and MHC isoform. The results support the view that denervation inactivity, like other kinds of muscle inactivity, favours the expression of fast type myofibrillar isoforms, and that this effect is counteracted, at least partially, by the spontaneous activity of the denervated muscle.