High efficiency gene transfer (greater than 90%) in chicken dorsal root ganglion neurons has been obtained by DNA calcium phosphate co-precipitation, hence providing an important tool to study control of gene expression in primary neurons. Transfection with c-fos promoter sequences linked to the chloramphenicol acetyltransferase reporter gene showed that the serum responsive element functions as a strong transcriptional enhancer. Transcription from this element is developmentally regulated, and mediates the genetic response to nerve growth factor (NGF) in developing avian sensory neurons. Furthermore, NGF exerts a negative effect on transcription from the cyclic AMP responsive element, thereby supporting the involvement of tyrosine kinase activation by NGF in primary sensory neurons.