Cellular transition from the resting state to DNA synthesis involves master switches genes encoding transcriptional factors (e.g., fos, jun, and egr genes), whose targets remain to be fully characterized. To isolate coding sequences specifically accumulated in late G1, a differential screening was performed on a cDNA library prepared from hamster lung fibroblasts stimulated for 5 h with serum. One of the positive clones which displayed a sevenfold induction, turned out to code for a protein sharing homology to Ras-like products. Cloning and sequence analysis of the human homolog revealed that this putative new small GTPase, referred to as rhoG, is more closely related to the rac, CDC42, and TC10 members of the rho (ras homolog) gene family and might have diverged very early during evolution. rhoG mRNA accumulates in proportion to the mitogenic strength of various purified growth factors used for the stimulation, as a consequence of transcriptional activation. G1-specific RNA accumulation is impaired upon addition of antimitogenic cyclic AMP and is enhanced when protein synthesis is inhibited, mainly as a result of RNA stabilization. rhoG mRNA expression is observed in a wide variety of human organs but reaches a particularly high level in lung and placental tissues.