TPL (Tachypleus plasma lectin)-1 was purified by using a Sepharose column and TPL-2 was purified from an LPS-Sepharose (LPS coupled to Sepharose matrix) affinity column, as described previously [Chiou, Chen, Y.-W., Chen, S.-C., Chao and Liu (2000) J. Biol. Chem. 275, 1630-1634] and the corresponding genes were cloned [Chen, Yen, Yeh, Huang and Liu (2001) J. Biol. Chem. 276, 9631-9639]. In the present study, TPL-1 and -2 were produced in yeast, and the recombinant proteins secreted into the media were purified and characterized. The proteins show specific PGN (peptidoglycan)- and LPS-binding activity, suggesting a role in trapping Gram-positive and Gram-negative bacteria respectively in innate immunity. Using BIAcore assays, the dissociation constant for the TPL-1-PGN complex was measured as 8x10(-8) M. Replacement of Asn74, the N-glycosylation site of TPL-1, with Asp abolishes the PGN-binding affinity, whereas the unglycosylated TPL-2 N3D mutant retains LPS-binding activity. DTT (dithiothreitol) treatment to break disulphide linkages abrogates TPL-2 activity but does not interfere with TPL-1 function. Cys4 in TPL-2 may form an intermolecular disulphide bond, which is essential for activity. As a result, the TPL-2 C4S mutant is inactive and is eluted as a monomer on a non-reducing gel. TPL-2 C6S is active and forms a non-covalently linked dimer. A model describing TPL-2 binding with LPS is proposed. These two plasma lectins that have different ligand specificities can be used for the detection and discrimination of bacteria and removal of endotoxins.