Time-resolved magneto-optical Kerr spectroscopy of ferromagnetic InMnAs reveals two distinct demagnetization processes--fast (<1 ps) and slow (approximately 100 ps). Both components diminish with increasing temperature and are absent above the Curie temperature. The fast component rapidly grows with pump power and saturates at high fluences (>10 mJ/cm(2)); the saturation value indicates a complete quenching of ferromagnetism on a subpicosecond time scale. We attribute this fast dynamics to spin heating through p-d exchange interaction between photocarriers and Mn ions, while the approximately 100 ps component is interpreted as spin-lattice relaxation.