Regulated turnover of proteins in the cytosol and nucleus of eukaryotic cells is primarily performed by the ubiquitin-proteasome system (UPS). The UPS is involved in many essential cellular processes. Alterations in this proteolytic system are associated with a variety of human pathologies, such as neurodegenerative diseases, cancer, immunological disorders and inflammation. The precise role of the UPS in the pathophysiology of these diseases, however, remains poorly understood. Detection of UPS aberrations has been a major challenge because of the complexity of the system. Most studies focus on various aspects of the UPS, such as substrate recognition, ubiquitination, deubiquitination or proteasome activity, and do not provide a complete picture of the UPS as an integral system. To monitor the efficacy of the UPS, a number of reporter substrates have been developed based on fluorescent proteins, such as the green fluorescent protein and its spectral variants. These fluorescent UPS reporters contain specific degradation signals that target them with high efficiency and accuracy for proteasomal degradation. Several studies have shown that these reporters can probe the functionality of the UPS in cellular and animal models and provide us with important information on the status of the UPS under various conditions. Moreover, these reporters can aid the identification and development of novel anti-cancer and anti-inflammatory drugs based on UPS inhibition.