Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca(2+)-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca(2+) and Ca(2+)-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca(2+) pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs.