Crustacean hyperglycemic hormone (CHH) precursor-related peptides (CPRPs) are produced during the proteolytic processing of CHH preprohormones. Currently, the physiological roles played by CPRPs are unknown. Due to their large size, direct mass spectrometric sequencing of intact CPRPs is difficult. Here, we describe a novel strategy for sequencing Cancer productus CPRPs directly from a tissue extract using nanoflow liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Four novel CPRPs were characterized with the aid of MS/MS de novo sequencing of 27 truncated CPRP peptides. Extensive modifications (methionine oxidation and carboxy-terminal methylation) were identified in both the full-length and truncated peptides. To investigate the origin of the modifications and truncations, a full-length CPRP was synthesized and subjected to the same storage and extraction protocols used for the characterization of the native peptides. Here, some methionine oxidation was seen, however, no methylation or truncation was evident suggesting much of the chemical complexity seen in the native CPRPs is unlikely due to a sample preparation artifact. Collectively, our study represents the most complete characterization of CPRPs to date and provides a foundation for future investigation of CPRP function in C. productus.