F508del is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that is responsible for the genetic disease Cystic Fibrosis (CF). It results in a major failure of CFTR to traffic to the apical membrane of epithelial cells, where it should function as a chloride (Cl-) channel. Most studies on localization, processing and cellular trafficking of wild-type (wt) and F508del-CFTR have been performed in non-epithelial cells. Notwithstanding, polarized epithelial cells possess distinctly organized and regulated membrane trafficking pathways. We have used Madin-Darby canine kidney (MDCK) type II cells (proximal tubular cells which do not express endogenous CFTR) to generate novel epithelial, polarized cellular models stably expressing wt- or F508del-CFTR through transduction with recombinant lentiviral vectors. Characterization of these cell lines shows that wt-CFTR is correctly processed and apically localized, producing a cAMP-activated Cl- conductance. In contrast, F508del-CFTR is mostly detected in itsimmature form, localized intracellularly and producing only residual Cl- conductance. These novel cell lines constitute bona fide models and significantly improved resources to investigate the molecular mechanisms of polarized membrane traffic of wt- and F508del-CFTR in the same cellular background. They are also useful to identify/validate novel therapeutic compounds for CF.
(c) 2005 S. Karger AG, Basel