The cytotoxicity receptor CRACC (CS-1) recruits EAT-2 and activates the PI3K and phospholipase Cgamma signaling pathways in human NK cells

J Immunol. 2005 Dec 15;175(12):7996-8002. doi: 10.4049/jimmunol.175.12.7996.

Abstract

The CD2-like receptor-activating cytotoxic cell (CRACC) is a cell surface receptor of the CD2 family that triggers NK cell-mediated cytotoxicity through an undefined signaling pathway. CRACC contains cytoplasmic tyrosine-based motifs, immunoreceptor tyrosine-based switch motifs, which resemble those found in the NK cell receptor 2B4. In 2B4, these motifs recruit the adaptor signaling lymphocytic activation molecule-associated protein (SAP), which initiates a signaling cascade mediating cytotoxicity. However, CRACC does not recruit SAP. In this study, we demonstrate that, upon activation, CRACC associates with a homolog of SAP, Ewing's sarcoma's/FLI1-activated transcript 2 (EAT-2), in human NK cells. We show that association of EAT-2 induces the phosphorylation of CRACC and that this process is partially reduced by a pharmacological inhibitor of Src kinases. We identify PLCgamma1, PLCgamma2, and PI3K as the major signaling mediators downstream of CRACC/EAT-2 implicated in NK cell-mediated cytotoxicity. Moreover, EAT-2 also associates with 2B4 predominantly in resting NK cells, whereas SAP preferentially binds 2B4 upon activation. These results outline a new signaling pathway that triggers CRACC-mediated cytotoxicity and modulates 2B4-mediated activation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cells, Cultured
  • Cytotoxicity, Immunologic*
  • Enzyme Activation
  • Humans
  • Killer Cells, Natural / cytology
  • Killer Cells, Natural / immunology
  • Killer Cells, Natural / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phospholipase C gamma
  • Phosphorylation
  • Protein Transport
  • Receptors, Immunologic / metabolism*
  • Signal Transduction
  • Signaling Lymphocytic Activation Molecule Family
  • Transcription Factors / metabolism*
  • Transfection

Substances

  • Receptors, Immunologic
  • SH2D1B protein, human
  • SLAMF7 protein, human
  • Signaling Lymphocytic Activation Molecule Family
  • Transcription Factors
  • Phosphatidylinositol 3-Kinases
  • Phospholipase C gamma