An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the model, the neural activity is related to the Post Synaptic Potentials (PSPs) which is common link between MEG and fMRI. Each PSP is modeled by the direction and strength of its current flow which are treated as random variables. The overall neural activity in each voxel is used for equivalent current dipole in MEG and as input of extended Balloon model in fMRI. The proposed model shows the possibility of detecting activation by fMRI in a voxel while the voxel is silent for MEG and vice versa. Parameters of the model can illustrate situations like closed field due to non-pyramidal cells, canceling effect of inhibitory PSP on excitatory PSP, and effect of synchronicity. In addition, the model shows that the crosstalk from neural activities of the adjacent voxels in fMRI may result in the detection of activations in these voxels that contain no neural activities. The proposed model is instrumental in evaluating and comparing different analysis methods of MEG and fMRI. It is also useful in characterizing the upcoming combined methods for simultaneous analysis of MEG and fMRI.