Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis

Biochem J. 2006 Mar 15;394(Pt 3):715-25. doi: 10.1042/BJ20050905.

Abstract

A major theme of TBI (traumatic brain injury) pathology is the over-activation of multiple proteases. We have previously shown that calpain-1 and -2, and caspase-3 simultaneously produced alphaII-spectrin BDPs (breakdown products) following TBI. In the present study, we attempted to identify a comprehensive set of protease substrates (degradome) for calpains and caspase-3. We further hypothesized that the TBI differential proteome is likely to overlap significantly with the calpain- and caspase-3-degradomes. Using a novel HTPI (high throughput immunoblotting) approach and 1000 monoclonal antibodies (PowerBlottrade mark), we compared rat hippocampal lysates from 4 treatment groups: (i) naïve, (ii) TBI (48 h after controlled cortical impact), (iii) in vitro calpain-2 digestion and (iv) in vitro caspase-3 digestion. In total, we identified 54 and 38 proteins that were vulnerable to calpain-2 and caspase-3 proteolysis respectively. In addition, the expression of 48 proteins was down-regulated following TBI, whereas that of only 9 was up-regulated. Among the proteins down-regulated in TBI, 42 of them overlapped with the calpain-2 and/or caspase-3 degradomes, suggesting that they might be proteolytic targets after TBI. We further confirmed several novel TBI-linked proteolytic substrates, including betaII-spectrin, striatin, synaptotagmin-1, synaptojanin-1 and NSF (N-ethylmaleimide-sensitive fusion protein) by traditional immunoblotting. In summary, we demonstrated that HTPI is a novel and powerful method for studying proteolytic pathways in vivo and in vitro.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain Injuries / metabolism*
  • Calpain / metabolism*
  • Caspase 3
  • Caspases / metabolism*
  • Gene Expression Regulation
  • Hippocampus / metabolism
  • Humans
  • Male
  • Proteome / metabolism*
  • Proteomics
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Proteome
  • CASP3 protein, human
  • Calpain
  • Casp3 protein, rat
  • Caspase 3
  • Caspases