Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells

Gene Ther. 2006 Feb;13(4):356-68. doi: 10.1038/sj.gt.3302655.

Abstract

Non-human adenovirus vectors have attractive immunological properties for gene therapy but are frequently restricted by inefficient transduction of human target cells. Using chicken embryo lethal orphan (CELO) virus, we employed a nongenetic mechanism of polymer coating and retargeting with basic fibroblast growth factor (bFGF-pc-CELOluc), a strategy that permits efficient tropism modification of human adenovirus. bFGF-pc-CELOluc showed efficient uptake and transgene expression in chick embryo fibroblasts (CEF), and increased levels of binding and internalization in a variety of human cell lines. Transgene expression was also greater than unmodified CELOluc in PC-3 human prostate cells, although the specific activity (RLU per internalized viral genome) was decreased. In CEF, the specific activity of bFGF-pc-CELOluc was considerably higher than in the human prostate cell line PC-3. Retargeted virus was fully resistant to inhibition by human serum with known adenovirus-neutralizing activity in vitro, while in mice CELOluc was cleared less rapidly from the blood than Adluc following i.v. administration in the presence of adenovirus neutralizing serum. Polymer coating and retargeting with bFGF further reduced rates of clearance for both viruses, suggesting protection against both neutralizing and opsonizing factors. The data indicate that CELO virus may be retargeted to infect human cells via alternative, potentially disease-specific, receptors and resist the effects of pre-existing humoral immunity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATPases Associated with Diverse Cellular Activities
  • Animals
  • Cell Adhesion Molecules / analysis
  • Cell Line
  • Cells, Cultured
  • Chick Embryo
  • Fibroblast Growth Factor 2 / genetics*
  • Fibroblast Growth Factor 2 / metabolism
  • Fibroblasts / metabolism
  • Fibroblasts / virology
  • Fowl adenovirus A / genetics*
  • Gene Expression
  • Gene Targeting / methods
  • Genetic Therapy / methods*
  • Genetic Vectors / administration & dosage*
  • Genetic Vectors / genetics
  • Genetic Vectors / metabolism
  • Humans
  • Immune Sera / pharmacology
  • Immunohistochemistry / methods
  • Male
  • Metalloendopeptidases
  • Mice
  • Neutralization Tests
  • Polymers
  • Prostate / metabolism
  • Prostate / virology
  • Protein Engineering
  • Transduction, Genetic / methods*
  • Transgenes

Substances

  • Cell Adhesion Molecules
  • Immune Sera
  • Polymers
  • Fibroblast Growth Factor 2
  • Metalloendopeptidases
  • SPG7 protein, human
  • ATPases Associated with Diverse Cellular Activities