This multidisciplinary study investigates agro-ecological functions (nature conservation, agriculture, environment) and implications of newly created, mown sown and unsown field margin strips installed on ex-arable land to increase biodiversity. From conservational concern, the development of species rich field margin strips was not strongly affected by the installed type of margin strip since species diversity converged over time, whether strips were sown or not. Convergence between unsown and sown margin strips occurred also in terms of species composition: unsown and sown strips became similar over time. Mowing without removal of cuttings significantly reduced species richness, yielded more grassy margin strips and delayed similarity in species composition between sown and unsown margin strips. Species richness on the longer term was not significantly affected by light regime nor by disturbance despite significant temporary effects shortly after the disturbance event. On the contrary vegetation composition in terms of importance of functional groups changed after disturbance: the share of spontaneous species within functional groups increased resulting in higher similarity between the sown and unsown vegetation. Furthermore risk of invasion was highest in the disturbed unsown community on the unshaded side of a tree lane. A positive effect of botanical diversity on insect number and diversity was found. However the effects of botanical diversity on insect number was mediated by light regime. At high light availability differences between plant communities were more pronounced compared to low light availablilty. The abundance of some insect families was dependent on the vegetation composition. Furthermore light availability significantly influenced insect diversity as well as the spatial distribution of families. From agricultural concern, installing margin strips by sowing a species mixture and a mowing regime with removal of cuttings are good practices to diminish the risk of species ingrowth into adjacent crops by creeping roots and rhizomes. Seed dispersal was only problematic one year after the installation of the field margin strips particularly nearby the unsown margin strip and wind-borne seeds were dispersed over limited distances, mainly within 4 m of field margins. Annual herbage yield was not affected by mowing management. DM yield of sown/unsown communities converged over time. Compared to herbage from an intensively managed fertilized grassland, field margin herbage revealed a low feeding value, owing to a low crude protein content, a low digestibility and a high crude fibre content. The unsown community had a higher forage quality than communities sown to bred commercially available grass varieties. Both digestibility and crude protein content decreased over time irrespective of plant community or location. Mid June cuts were more productive than mid September cuts but digestibility and crude protein content was lower. The use of herbage from field margins as hay for horses or as a component in farmland compost are good alternatives. A strong relation was found between the distribution of pest insects and their antagonist families along field margin strips indicating a status of biological equilibrium. From environmental concern, field margin strips buffered boundary vegetation and watercourses against cropped areas loaded with high levels of mineral nitrogen. Margin strips reduced the mineral nitrogen content of the soil in the margin and mineral nitrogen loss during wintermonths. Mineral nitrogen loss was not affected by field margin type but by distance from the field crop. A minimal width of 5 m is necessary to reach an optimal reduction in mineral soil N and N losses.