Computational modeling is useful as a means to assemble and test what we know about proteins and networks. Models can help address key questions about the measurement, definition and function of proteomic networks. Here, we place these biological questions at the forefront in reviewing the computational strategies that are available to analyze proteomic networks. Recent examples illustrate how models can extract more information from proteomic data, test possible interactions between network proteins and link networks to cellular behavior. No single model can achieve all these goals, however, which is why it is critical to prioritize biological questions before specifying a particular modeling approach.