Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers

Clin Infect Dis. 2006 Mar 1;42(5):622-7. doi: 10.1086/500134. Epub 2006 Jan 25.

Abstract

Background: Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations.

Objective: We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile.

Methods: A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly.

Results: The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation.

Conclusion: This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimalarials / pharmacology*
  • Chloroquine / pharmacology*
  • Drug Resistance*
  • Humans
  • India
  • Malaria, Falciparum / diagnosis*
  • Malaria, Falciparum / drug therapy
  • Malaria, Falciparum / parasitology*
  • Membrane Proteins / genetics
  • Membrane Transport Proteins
  • Mutation
  • Plasmodium falciparum / genetics
  • Polymerase Chain Reaction / methods*
  • Protozoan Proteins
  • Sensitivity and Specificity
  • Travel

Substances

  • Antimalarials
  • Membrane Proteins
  • Membrane Transport Proteins
  • PfCRT protein, Plasmodium falciparum
  • Protozoan Proteins
  • Chloroquine