After immunostimulation, murine macrophages oxidize L-arginine into nitric oxide (NO) which acts as an effector molecule. In this study, we attempted to establish whether activated macrophage-derived NO forms paramagnetic complexes in tumor target cells which do not express by themselves the L-arginine:NO pathway. Accordingly, murine L1210 leukemia cells were cocultivated with activated peritoneal macrophages from Bacillus-Calmette-Guérin-infected mice, or activated in vitro with interferon-gamma. In control experiments, macrophages were prevented from producing nitrogen oxides by incubation with NG-monomethyl-L-arginine, a specific inhibitor of the L-arginine:NO pathway. After coculture, L1210 cells were removed from adherent macrophage monolayers and analyzed by electron paramagnetic resonance at 77 K. In the L1210 cells cultured with activated macrophages, we detected a signal typical of nitrosyl-iron-sulfur complexes, with g values of 2.041 and 2.015. This signal was not present when L1210 cells were either cultured alone or cocultured with activated macrophages in the presence of NG-monomethyl-L-arginine. Mitochondria from activated macrophage-injured L1210 cells also exhibited the signal with g values of 2.041 and 2.015. These results show that when tumor target cells undergo cell-to-cell contact with activated macrophages during culture, the macrophages promote target cell nitrosylation in compartments like mitochondria.