A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer operated at 20 MHz and 40 MHz, and was comprised of a single piezoelectric layer with additional passive layers. The Krimholtz-Leedom-Matthaei (KLM) model was used to iteratively find optimal material properties of the different layers. The transducer characterization showed -6 dB fractional bandwidths of 30% and 25%, and two-way insertion losses of -20 dB and -36 dB, respectively.