Disruption of T cell regulatory pathways is necessary for immunotherapeutic cure of T cell acute lymphoblastic leukemia in mice

Eur Cytokine Netw. 2005 Dec;16(4):300-8.

Abstract

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. In recent years, the outcome has been globally improved by current therapies, but it remains poor in patients with high, persistent residual disease following the first course of chemotherapy, prompting evaluation of the possible beneficial effects of immunotherapy protocols. In this study, we hypothesized that the disruption of two immunoregulatory pathways controlling the auto-reactive T cell response might synergize with dendritic cell-based immunotherapy of the disease, which is considered to be poorly immunogenic. In this study, we used TAL1xLMO1 leukemia cells adoptively transferred in mice, to generate murine leukemia with poorly immunogenic cells as a model for human T-ALL. Subsequently, these animals were treated with several different immunotherapeutic protocols. We compared the efficiency of a classical, dendritic cell-based immunotherapy (injection of dendritic cells loaded with tumor-derived antigenic products), to a combined treatment associating injection of antigen-loaded dendritic cells and disruption of the two immunoregulatory pathways: CD25+ suppressive T cells and cytotoxic T lymphocyte-associated antigens (CTLA-4). We show that this combined treatment resulted in cure, concomitantly with in vivo generation of immune memory, and TNF-alpha secretion. This study demonstrates that the disruption of these two immunoregulatory pathways synergized with immunostimulation by dendritic cells loaded with tumor-derived antigens, and paves the way for the testing of this combination in clinical trials.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD / metabolism
  • Antigens, Neoplasm / administration & dosage
  • CTLA-4 Antigen
  • Cell Line, Tumor
  • Dendritic Cells / immunology
  • Dendritic Cells / metabolism
  • Dendritic Cells / transplantation
  • Disease Models, Animal
  • Immunologic Memory
  • Immunotherapy, Adoptive*
  • Interleukin-2 Receptor alpha Subunit / biosynthesis
  • Lymphocyte Depletion
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / immunology*
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / metabolism
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / therapy*
  • Signal Transduction / immunology*
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism
  • T-Lymphocytes, Regulatory / immunology
  • T-Lymphocytes, Regulatory / metabolism
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Antigens, CD
  • Antigens, Neoplasm
  • CTLA-4 Antigen
  • CTLA4 protein, human
  • Ctla4 protein, mouse
  • Interleukin-2 Receptor alpha Subunit
  • Tumor Necrosis Factor-alpha