Dopant radiative cooling effects in indirect-drive Ar-doped capsule implosion experiments

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):066403. doi: 10.1103/PhysRevE.72.066403. Epub 2005 Dec 9.

Abstract

We present results from simulations performed to investigate the effects of dopant radiative cooling in inertial confinement fusion indirect-drive capsule implosion experiments. Using a one-dimensional radiation-hydrodynamics code that includes inline collisional-radiative modeling, we compute in detail the non-local thermodynamic equilibrium atomic kinetics and spectral characteristics for Ar-doped DD fuel. Specifically, we present results from a series of calculations in which the concentration of the Ar is varied, and examine the sensitivity of the fuel conditions (e.g., electron temperature) and neutron yield to the Ar dopant concentration. Simulation results are compared with data obtained in OMEGA indirect-drive experiments in which monochromatic imaging and spectral measurements of Ar Hebeta and Lybeta line emission were recorded. The incident radiation drive on the capsule is computed with a three-dimensional view factor code using the laser beam pointings and powers from the OMEGA experiments. We also examine the sensitivity of the calculated compressed core electron temperatures and neutron yields to the radiation drive on the capsule and to the radiation and atomic modeling in the simulations.