Role of tumor necrosis factor alpha (TNF-alpha) and interleukin-10 in the pathogenesis of severe murine monocytotropic ehrlichiosis: increased resistance of TNF receptor p55- and p75-deficient mice to fatal ehrlichial infection

Infect Immun. 2006 Mar;74(3):1846-56. doi: 10.1128/IAI.74.3.1846-1856.2006.

Abstract

Intraperitoneal (i.p.) infection with a high dose of a highly virulent Ehrlichia strain (IOE) results in a toxic shock-like syndrome characterized by severe liver injury and systemic overproduction of tumor necrosis factor alpha (TNF-alpha) by CD8+ T cells. We examined the role of TNF-alpha and TNF receptors in high-dose-IOE-induced shock/liver injury. TNF receptor (TNFR) I/II-/- mice lacking both the p55 and p75 receptors for this cytokine were more resistant to IOE-induced liver injury than their wild-type background controls. TNFR I/II-/- mice survived longer, dying between 15 and 18 days, with evidence of mild liver necrosis/apoptosis. In contrast, wild-type mice were not rescued from the lethal effect of IOE by TNF-alpha neutralization. TNF-alpha-depleted mice developed severe liver injury and succumbed to disease between days 9 and 11 postinfection, similar to sham-treated, infected wild-type mice. Although IFN-gamma production in the spleens of IOE-infected TNFR I/II-/- and TNF-alpha-depleted mice was higher than that detected in wild-type controls, these mice had higher bacterial burdens than infected controls. Following high-dose IOE challenge, TNFR I/II-/- and TNF-alpha-depleted mice have an early increase in IL-10 levels in sera and spleens, which was produced mainly by adherent spleen cells. In contrast, a late burst of interleukin-10 (IL-10) was observed in control mice. Nonadherent spleen cells were the major source of IL-10 in IOE-infected wild-type mice. We conclude that TNFR I/II and TNF-alpha participate in Ehrlichia-induced shock and host defense by regulating liver injury and controlling ehrlichial burden. Our data suggest that fatal ehrlichiosis could be a multistep process, where TNF-alpha is not solely responsible for mortality.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Apoptosis
  • Disease Susceptibility / immunology
  • Ehrlichia / immunology
  • Ehrlichia / pathogenicity*
  • Ehrlichiosis / immunology
  • Ehrlichiosis / mortality*
  • Ehrlichiosis / physiopathology
  • Immunity, Innate / physiology*
  • Interleukin-10 / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Muridae
  • Receptors, Tumor Necrosis Factor / deficiency
  • Receptors, Tumor Necrosis Factor / genetics
  • Receptors, Tumor Necrosis Factor / physiology*
  • Tumor Necrosis Factor-alpha / physiology*

Substances

  • Receptors, Tumor Necrosis Factor
  • Tumor Necrosis Factor-alpha
  • Interleukin-10