This study investigated comodulation detection differences (CDD) for fixed- and roved-frequency maskers. The objective was to determine whether CDD could be accounted for better in terms of energetic masking or in terms of perceptual fusion/segregation related to comodulation. Roved-frequency maskers were used in order to minimize the role of energetic masking, allowing possible effects related to perceptual fusion/segregation to be revealed. The signals and maskers were composed of 30-Hz-wide noise bands. The signal was either comodulated with the masker (A/A condition) or had a temporal envelope that was independent (A/B condition). The masker was either gated synchronously with the signal or had a leading temporal fringe of 200 ms. In the fixed-frequency masker conditions, listeners with low A/A thresholds showed little masking release due to masker temporal fringe and had CDDs that could be accounted for by energetic masking. Listeners with higher A/A thresholds in the fixed-frequency masker conditions showed relatively large CDDs and large masking release due to a masker temporal fringe. The CDDs of these listeners may have arisen, at least in part, from processes related to perceptual segregation. Some listeners in the roved masker conditions also had large CDDs that appeared to be related to perceptual segregation.