Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization

Appl Environ Microbiol. 1996 Jun;62(6):2138-44. doi: 10.1128/aem.62.6.2138-2144.1996.

Abstract

The bacterial community structure in the winter cover and pelagic zone of a high mountain lake was analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes. Cells fixed on membrane filters were hybridized with a probe specific for the domain Bacteria as well as with probes for the alpha, beta, and gamma subclasses of the class Proteobacteria and the Cytophaga-Flavobacterium group. The fraction of bacteria detectable after hybridization with the bacterial probe EUB ranged from 40 to 81% of 4(prm1),6-diamidino-2-phenylindole (DAPI) counts. The bacterial assemblage varied considerably between and within different habitats (snow, slush, and lake water) but was in most cases dominated by members of the beta subclass (6.5 to 116% of bacteria detectable with probe EUB). The sum of bacteria hybridizing with group-specific probes was usually lower than the fraction detectable with probe EUB. Image analysis was used to characterize morphology and the size-specific biomass distribution of bacterial assemblages, which clearly separated the three habitats. Although the measured secondary production parameters and the fraction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride-reducing bacteria varied by more than an order of magnitude in the different slush and pelagic layers, detectability with the fluorescent probe EUB was constantly high. Physiological strategies of bacteria under nutrient limitation and at low temperatures are discussed in the context of the ribosome content of single cells. This study confirms the suitability of fluorescently labeled rRNA-targeted probes for the characterization of bacterial population structures even in oligotrophic habitats.