Retinal dystrophies are rarely curable diseases and several avenues of research are being pursued, such replacement therapies and pharmacological treatment. Among them, the transplantation of functional retinal cells has been envisaged in order to restore vision in patients who have these diseases by repopulating the damaged retina and/or by rescuing retinal neurons from further degeneration. Over the past few years, identification and characterization of stem cells has opened new avenues in cell-replacement therapy. Since retinal stem cells are already present during embryonic development, they persist in the adult mammalian eye only in the ciliary marginal zone, even a stem cell potential has been described for the Müller glia in the retina. This result opened possibilities of regeneration by mobilizing endogenous stem cells to respond to injury. Regarding the transplantation studies, in all experiments using different types of stem cells (retinal progenitors, neural stem cells, bone marrow-derived stem cells and ES cells), despite their incorporation within the host's retina, the transplanted cells failed to express retina-specific markers and to establish synaptic connections. Therefore, the true potential of the different stem cells in retina repair can only be realized with more information about mechanisms that regulate their proliferation and differentiation; and by development of techniques that allow their prospective identification and enrichment.