The purpose of this experimental study was to evaluate the effects of vision and stretching of the calf muscles on postural sway during quiet standing. Under pre-stretch conditions, participants stood on a force plate for 30s and the sway of the ground reaction force center of pressure was recorded. The following postural sway variables were calculated off-line: sweep speed, sway speed, standard deviation, maximal mediolateral range, maximal anteroposterior range, mean mediolateral position and mean anteroposterior position. For post-stretch conditions, participants stood quietly on a device that was utilized to impose a static 3 min ankle joint dorsiflexion stretch. Immediately thereafter, participants moved onto the force platform where postural sway parameters were again recorded. Randomized eyes-open and eyes-closed conditions were tested in both cases. Results showed that postural sway significantly increased due to stretch (sweep speed, sway speed, standard deviation, maximal anteroposterior range, mean anteroposterior position), as well as eye closure (sweep speed, sway speed, standard deviation, maximal mediolateral range, maximal anteroposterior range). The interaction between stretch and eye closure was also significant (sweep speed, sway speed, standard deviation, maximal mediolateral range), suggesting that there were only minor increases in postural sway after stretch under the eyes-open condition. It was suggested that stretching of the calf muscles has the effect of increasing postural sway, although this effect can be greatly compensated for when vision is included.