Objective: To determine genetic predispositions for diabetic polyneuropathy, we investigated the relationship between the -866G/A polymorphism of uncoupling protein (UCP) 2 and neurological manifestations in 197 type 2 diabetic patients.
Research design and methods: We first examined whether UCP2 mRNA had been expressed in the dorsal root ganglion (DRG) in four Long-Evans Tokushima Otsuka rats using RT-PCR and electrophoresis. Genotyping of UCP2 promoter polymorphism -866G/A was then performed in 197 unrelated Japanese type 2 diabetic patients, who were subjected to nerve conduction, quantitative vibratory perception, head-up tilt, and heart rate variability tests, by PCR restriction fragment-length polymorphism. The relationships between UCP2 genotype and various nerve functions were analyzed by uni- and multivariable analysis.
Results: Expression of UCP2 mRNA was confirmed in rat DRG. Multiple regression analysis clarified the hypothesis that the G/A + A/A genotype was significantly related to decreased motor nerve conduction velocity and impaired blood pressure maintenance on the head-up tilt test. Multiple logistic regression analysis revealed that the G/A + A/A genotypes are a significant risk factor for sensory nerve conduction slowing and orthostatic hypotension.
Conclusions: UCP2 promoter gene polymorphism -866 G/A was significantly associated with nerve conduction slowing and vasomotor sympathetic functions. These findings suggest that the higher UCP2 activity related to the A allele has an energy-depleting effect on peripheral nerve function in type 2 diabetic patients.