Syntaxin plays a key role in intracellular membrane fusion in eukaryotic cells. The function of syntaxin relies on its proper trafficking to and targeting at the target membrane. The mechanisms underlying the trafficking and targeting of syntaxin to its physiological sites remain poorly understood. Here we have analyzed the trafficking of syntaxin 1A in INS-1 and CHO cells. We have identified the transmembrane domain together with several flanking positive-charged amino acids as the minimal domain required for the membrane delivery. Interestingly, we found that SNARE motif-exposed syntaxin 1A mutants were retained in endoplasmic reticulum (ER) and failed to transport to the cell surface in the absence of SNAP-25, suggesting that the exposure of the SNARE motif causes ER retention and complexation with SNAP-25 helps the ER escape. Finally, our data propose two key roles for the H(abc) domain: to protect nonspecific interaction by masking the SNARE motif and to participate in the clustering of syntaxin 1A to the fusion sites in the plasma membrane.