Objective: Ca(2+)-activated K(+)-channels (BK(Ca)) play an important role in lysophosphatidylcholine (LPC)-induced endothelial dysfunction. Aim of our study was to investigate whether LPC-induced activation of BK(Ca) is also involved in monocyte adhesion to endothelial cells (EC).
Methods and results: Measurement of membrane potential (MP) was performed using the fluorescence dye DiBAC. Adhesion of the monocytotic cell line U937 to EC was analysed by (3)[H]-thymidine-adhesion-assay. Expression of ICAM-1 and VCAM-1 were analyzed by FACS. LPC induced a hyperpolarization of EC in a dose-dependent manner with the maximum seen with 2 microM. This was prevented by the BK(Ca)-inhibitor iberiotoxin (IBX, 100nM). Adhesion of U937 cells to EC was increased after stimulation of EC with LPC. This effect was time-dependent with the maximum seen after 4h. LPC-induced adhesion was significantly reduced when EC were co-incubated with IBX, or NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI, 5 microM) and also blocked by addition of 2-aminoethoxydiphenylborate (2-APB, 100 microM) or the calcium-chelator BAPTA (10 microM). Stimulation of U937 cells with LPC did not result in an increased adhesion to unstimulated EC.
Conclusion: Activation of the endothelial BK(Ca) plays an important role in monocyte adhesion to endothelial cells.