The reaction between formaldehyde and the side-chain of tryptophan results in a methylol adduct. This methylol adduct formation also occurs during reductive methylation reactions. In the current study, we investigate the fragmentation pattern of peptides with N-terminal dimethylation and methylol adduction at the tryptophan side-chain. Once formed, the methylol group can easily undergo water loss to form an imine. The peptides with imine or methylol adduct on tryptophan exhibit similar MS/MS fragmentation patterns. We observed ions resulting from an intramolecular reaction between the dimethylamino group at the peptide N-terminus or the lysine side-chain and the imine group. This reaction reduces the imine to a methyl group. We also observed the loss of the imine adduct on tryptophan. This reaction is likely to occur through the reaction of an amino or hydroxyl group with the imine adduct followed by subsequent loss of methylenimine or formaldehyde.