Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2

Proc Natl Acad Sci U S A. 2006 May 2;103(18):7136-41. doi: 10.1073/pnas.0508606103. Epub 2006 Apr 20.

Abstract

Sustained activation of poly(ADP-ribose) polymerase-1 (PARP-1) and extracellular signal-regulated kinases 1/2 (ERK1/2) both promote neuronal death. Here we identify a direct link between these two cell death pathways. In a rat model of hypoglycemic brain injury, neuronal PARP-1 activation and subsequent neuronal death were blocked by the ERK1/2 inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059). In neuron cultures, PARP-1-mediated neuronal death induced by N-methyl-d-aspartate, peroxynitrite, or DNA alkylation was similarly blocked by ERK1/2 pathway inhibitors. These inhibitors also blocked PARP-1 activation and PARP-1-mediated death in astrocytes. siRNA down-regulation of ERK2 expression in astrocytes also blocked PARP-1 activation and cell death. Direct effects of ERK1/2 on PARP-1 were evaluated by using isolated recombinant enzymes. The activity of recombinant human PARP-1 was reduced by incubation with alkaline phosphatase and restored by incubation with active ERK1 or ERK2. Putative ERK1/2 phosphorylation sites on PARP-1 were identified by mass spectrometry. Using site-directed mutagenesis, these sites were replaced with alanine (S372A and T373A) to block phosphorylation, or with glutamate (S372E and T373E) to mimic constitutive phosphorylation. Transfection of PARP-1 deficient mouse embryonic fibroblasts with the mutant PARP-1 species showed that the S372A and T373A mutations impaired PARP-1 activation, whereas the S372E and T373E mutations increased PARP-1 activity and eliminated the effect of ERK1/2 inhibitors on PARP-1 activation. These results suggest that PARP1 phosphorylation by ERK1/2 is required for maximal PARP-1 activation after DNA damage.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Death
  • Cells, Cultured
  • Enzyme Activation
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Humans
  • Hypoglycemia / metabolism
  • Hypoglycemia / pathology
  • MAP Kinase Kinase 1 / antagonists & inhibitors
  • MAP Kinase Kinase 1 / genetics
  • MAP Kinase Kinase 1 / metabolism
  • MAP Kinase Kinase 2 / antagonists & inhibitors
  • MAP Kinase Kinase 2 / genetics
  • MAP Kinase Kinase 2 / metabolism
  • MAP Kinase Signaling System / physiology
  • Mice
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / genetics
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 3 / genetics
  • Mitogen-Activated Protein Kinase 3 / metabolism*
  • Neurons / cytology
  • Neurons / metabolism
  • Phosphorylation
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases / genetics
  • Poly(ADP-ribose) Polymerases / metabolism*
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Rats
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • RNA, Small Interfering
  • Recombinant Proteins
  • PARP1 protein, human
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2