The influence of noradrenaline and protein kinase C modulators on (+)-[3H]isradipine binding to voltage-dependent calcium channels has been studied in membranes of equine portal vein smooth muscle and intact strips isolated from rat portal vein. Specific (+)-[3H]isradipine binding to intact strips was increased by noradrenaline, a combination of aluminium and fluoride, and phorbol esters. The increase in isradipine binding induced by noradrenaline was inhibited by 1 microM prazosin while that induced by phorbol esters was inhibited by H7 (a protein kinase C inhibitor). In strips pretreated 6 h with 10 micrograms.ml-1 pertussis toxin, the noradrenaline-induced increase in isradipine binding was unchanged. In contrast, isradipine binding to membranes was unaffected by noradrenaline or GTP-gamma-S. Only phorbol esters had a stimulatory effect on isradipine binding when membranes were incubated in a medium containing 10 microM ATP and 5 mM Mg2+. Scatchard plot analysis reveals that the stimulation of isradipine binding by both noradrenaline and phorbol esters appears to result from a decrease in KD rather than an effect on the maximal binding capacity. Contractions evoked by noradrenaline were concentration-dependently depressed by isradipine. About 30% of the response was resistant to inhibition, while KCl-induced contractions were completely blocked. However, noradrenaline-induced contractions were more sensitive to isradipine inhibition than were KCl-induced contractions. These results suggest that activation of protein kinase C modulates isradipine binding to voltage-dependent Ca2+ channels independently of a separate modulation by membrane depolarization.