Efficient drug delivery remains an important challenge in medicine: continuous release of therapeutic agents over extended time periods in accordance with a predetermined temporal profile; local delivery at a constant rate to the tumour microenvironment to overcome much of the systemic toxicity and to improve antitumour efficacy; improved ease of administration, and increasing patient compliance required are some of the unmet needs of the present drug delivery technology. Microfabrication technology has enabled the development of novel controlled-release microchips with capabilities not present in the current treatment modalities. In this review, the current status and future prospects of different types of controlled-release microchips are summarised and analysed with reference to microneedle-based microchips, as well as providing an in-depth focus on microreservoir-based and nanoporous microchips.