Intracellular nitric oxide (NO) production in a microfluidic endothelium is detected using fluorescence microscopy. Bovine pulmonary artery endothelial cells (bPAECs) were loaded with the fluorescence probe diaminodifluorofluorescein diacetate (DAF-FM DA), and the subsequent fluorescent DAF-FM DA/NO adduct was measured. Solutions of bradykinin, a well-known stimulus of endothelium-derived NO, activated nitric oxide synthase (NOS) in the immobilized bPAECs. This activation was inhibited using l-nitro arginine methyl ester (L-NAME), a competitive inhibitor of NOS. Importantly, the NO production was also stimulated with adenosine triphosphate (ATP) using concentrations as low as 1 microM. Previous reports on stimulating NO production using an immobilized endothelium in microfluidic channels were limited by the requirement of ATP concentrations of at least 100 microM, a value that is not physiologically relevant. The ability to monitor NO production with ATP concentrations that are similar to in vivo levels of ATP in the microcirculation represents a major advance in the use of microfluidic technology as an in vitro model of the microcirculation.