In this work, we reanalyze the heart rate variability (HRV) data from the 2002 Computers in Cardiology (CiC) Challenge using the concept of large-scale dimension densities and additionally apply this technique to data of healthy persons and of patients with cardiac diseases. The large-scale dimension density (LASDID) is estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable correction of systematic errors produced by boundary effects in the rather large scales of a system. This way, it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method allows us to analyze short parts of the data and to look for differences between day and night. The circadian changes in the dimension density enable us to distinguish almost completely between real data and computer-generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data of 15 patients with atrial fibrillation (AF), 15 patients with congestive heart failure (CHF), 15 elderly healthy subjects (EH), as well as 18 young and healthy persons (YH). With our method we are able to separate completely the AF (rho (mu/ls) = 0.97 +/- 0.02) group from the others and, especially during daytime, the CHF patients show significant differences from the young and elderly healthy volunteers (CHF, 0.65 +/- 0.13; EH, 0.54 +/- 0.05; YH, 0.57 +/- 0.05; p < 0.05 for both comparisons). Moreover, for the CHF patients we find no circadian changes in rho (mu/ls) (day, 0.65 +/- 0.13; night, 0.66 +/- 0.12; n.s.) in contrast to healthy controls (day, 0.54 +/- 0.05; night, 0.61 +/- 0.05; p=0.002). Correlation analysis showed no statistical significant relation between standard HRV and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk stratification.