The effects of nitric oxide (NO) on allergic inflammation are controversial. In particular, the role of endothelial nitric oxide synthase (eNOS) in asthma remains uncertain. In the present study, we examined the effects of overexpression of eNOS on allergic inflammation using eNOS transgenic (eNOS-Tg) mice, in which eNOS protein is overexpressed in the vascular endothelium and airway epithelium. We found that eNOS-Tg mice showed a reduction of the asthmatic response to allergen challenge. Eosinophilic accumulation in the airspaces, eosinophilic activity, and bronchial responsiveness to acetylcholine were significantly attenuated in eNOS-Tg mice, as compared with wild-type mice following ovalbumin sensitization/challenge, even though the levels of circulating eosinophils were comparable in the wild-type and eNOS-Tg mice. The concentrations of eotaxin in the bronchoalveolar lavage fluid were significantly less in eNOS-Tg mice than in the wild-type mice. In addition, immunohistochemical analysis showed that the expressions of both intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 on the pulmonary endothelium of eNOS-Tg mice was decreased compared with the controls. These results suggest that chronic eNOS overexpression contributes to the suppression of allergic inflammation by reducing the production of eotaxin in the airspaces and/or the expression of adhesion molecules in the vascular endothelium.