The purpose of this study was to investigate the influence of structure and composition of microemulsions (AOT/Tween85/isopropyl myristate/water) on their transdermal delivery potential of a lipophilic model drug (Cyclosporin A), and to compare the drug delivery potential of microemulsion to the suspension of drug in normal saline containing 20% ethanol. Their type and structure were examined by measuring surface tension, density, viscometry, and electric conductivity; the degree of agreement between the techniques was assessed. Transdermal flux of Cyclosporin A through rat skin was determined in vitro using Franz-type diffusion cells. Results of conducting, viscosity, and surface tension measurement confirmed the prediction transition to a bicontinuous structure. The microemulsions increased transdermal drug delivery of Cyclosporin A up to 10 times compared to the suspension. The increased transdermal delivery was found to be due mainly to water concentration and appeared to be dependent on the structure of the microemulsions.