The topochemistry of the controlled heterogeneous esterification of cellulose fibers with fatty acid chlorides of different chain length, both in swelling and non-swelling media, was assessed by X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and contact angle measurements. On the one hand, the results provided by the combined use of these three powerful techniques showed unambiguously the occurrence of the reaction at the fibers' surface and, on the other hand, the XPS results showed that the surface coverage with the fatty acid moieties increased with their chain length, but was only modestly affected by the degree of substitution (DS), suggesting that when the esterification yield was increased (higher DS values), an in-depth reaction also occurred, particularly when DMF was used as a cellulose swelling medium, involving the OH groups buried below the fibers' surface.