By comparing the antiproliferative effect of the iron chelators ICL670A and O-trensox in the human hepatoma cell line HUH7 and human hepatocyte cultures, we have shown that ICL670A decreased cell viability, inhibited DNA replication and induced DNA fragmentation more efficiently than O-trensox. O-trensox and ICL670A induced a cell cycle blockade in G0-G1 and S phases respectively. In parallel, ICL670A inhibited polyamine biosynthesis by decreasing ornithine decarboxylase and spermidine/spermine N(1)-acetyltransferase activities. O-trensox increased polyamine biosynthesis and particularly putrescine level by stimulating spermidine-spermine N(1)-acetyltransferase activity which could activate the polyamine retro-conversion pathway. Moreover, the two chelators exhibit some cytotoxic effect in the two culture models; ICL670A was more cytotoxic than O-trensox and higher concentrations of the two chelators were necessary to induce a cytotoxicity in primary cultures versus hepatoma cells. These results suggested that ICL670A has the most efficient antitumoral effect, blocks cell proliferation by a pathway different of O-trensox and may constitute a potential drug for anticancer therapy.