Different strategies exist to treat intervertebral disc degeneration. Biological attempts to regenerate the disc are promising. However, degeneration of the disc is always accompanied by alterations of disc height, intradiscal pressure, load distribution, and motion patterns, respectively. Since those preconditions are independent factors for disc degeneration, it is unlikely that regeneration may occur without firstly restoring the physiological status of the affected spinal segment. In vitro and in vivo animal studies demonstrate that disc distraction normalizes intradiscal height and pressure. Furthermore, histological and radiological examinations provided some evidence for regenerative processes in the disc. Only dynamic stabilization systems currently offer the potential of a mechanical approach to intervertebral disc regeneration. Dynamic stabilization systems either using pedicle screws or with an interspinous device, demonstrate restabilization of spinal segments and reduction of intradiscal pressure. Clinical reports of patients with degenerative disc disease who underwent dynamic stabilization are promising. However, there is no evidence that those implants will lead to disc regeneration. Future treatment concepts should combine intradiscal cell based therapy together with dynamic restoration of the affected spinal segment.