The integrin Mac-1 plays a critical role in Fc receptor (FcR)-mediated antibody-dependent cellular cytotoxicity (ADCC). However, the mechanism by which Mac-1 facilitates the functions of FcgammaRIIA, a major FcR expressed on human leukocytes, is not fully understood. We report here that Mac-1 sustains cell adhesion, enhances cell spreading, and accelerates cell migration on preformed immune complexes (ICs) by directly interacting with FcgammaRIIA but not with the IC substrate. Coupling Mac-1 to FcgammaRIIA allows FcgammaRIIA to reside in the leading front of actin polymerization at the filopodial extension and thus could potentially enhance FcgammaRIIA-mediated cell spreading and migration. The direct interaction between Mac-1 and FcgammaRIIA is demonstrated by co-immunoprecipitation, by cell surface co-localization, and by solid-phase binding assays using recombinant alpha(M)I-domain and soluble FcgammaRIIA. Further mutational analysis identifies the E(253)-R(261) sequence within the alpha(M)I-domain as part of the FcgammaRIIA binding interface within Mac-1. Altogether, these results demonstrate that FcgammaRIIA recognizes Mac-1 via the alpha(M)I-domain but not the lectin domain, a distinct feature from other FcRs, and that Mac-1 binding confers FcgammaRIIA with the ability to prolong cell adhesion as well as to spread and migrate on the ICs, leading to effective cell killing by ADCC.