The success of any drug will depend on how closely it achieves an ideal combination of potency, selectivity, pharmacokinetics and safety. The key to achieving this success efficiently is to consider the overall balance of molecular properties of compounds against the ideal profile for the therapeutic indication from the earliest stages of a drug discovery project. The use of in silico predictive models of absorption, distribution, metabolism and elimination (ADME) and physicochemical properties is a major aid in this exercise, as it enables virtual molecules to be assessed across a broad range of properties from initial library generation, through to candidate selection. Of course, no measurement, whether in silico, in vitro or in vivo, is perfect and the uncertainties in any data should be explicitly taken into account when basing conclusions on test results. In addition, in the early stages of drug discovery, when designing a library that is lead seeking or building compound structure-activity relationships, the quality of any set of molecules should also be balanced against the chemical diversity covered. Here, a scheme is presented for achieving these goals based on a suite of predictive ADME models, probabilistic scoring and multiobjective optimisation for library design. The use of this platform for applications in lead identification and optimisation is illustrated.