Within host-pathogen systems where vector-borne transmission is the primary route of infection, little or no attention has been paid to the relative importance of secondary or alternative routes of transmission. Here, by contrast, we report the results from a controlled longitudinal field-scale experiment in which the prevalence of fleas (Siphonaptera) was manipulated and the occurrence and distribution of a flea-borne protozoan (Trypanosoma (Herpetosoma) microti) in a natural field vole (Microtus agrestis) population was monitored over a 2-year period. A non-systemic insecticide was applied to individual voles within two treatment grids and the prevalences of fleas and of T. microti were monitored on these and on two control grids. Blood samples were taken from all voles and PCR-based methods used to determine infection status. Insecticidal treatment was highly effective at reducing overall flea prevalence and recaptured animals (treated ca. 4 weeks previously) were very rarely infested (ca. 3%, compared with 50-70+% normally). On the other hand, the probability of trypanosome infection was reduced in treated animals on experimental grids to only around one-third of that normally observed. This suggests that direct, as opposed to flea-borne, transmission may not only occur, it may also be of epidemiological importance. The possibility that the importance of such transmission routes may have been underestimated in 'vector-borne' infections more generally is discussed.